ROSA — Multi-agent System for Web Services
Personalization

Przemyslaw Kazienko! and Maciej Kiewra?

1 Wroctaw University of Technology, Department of Information Systems, Wybrzeze
S. Wyspianskiego 27, 50-370 Wroctaw, Poland
kazienko@pwr.wroc.pl
2 Fujitsu Espaiia General Elio, 2 — entlo. dcha. — 46010 Valencia, Spain
mkiewra@mail.fujitsu.es, matixyQuwp.pl

Abstract. Automatic and non-invasive web personalization seems to
be a challenge for nowadays web sites. Many web mining techniques
are used to achieve this goal. Since current web sites evolve constantly,
web mining operations should be periodically repeated. A multi-agent
architecture facilitates integration of different mining methods and per-
mits the discovered knowledge to be verified and updated automatically.
We propose ROSA (Remote Open Site Agents) — a system that may
be easily incorporated into an existing web site. It consists of multiple
heterogeneous agents such as: User Session Monitor, Crawler, Content
Miner, Usage Miner, Hyperlink Recommender, Banner Recommender,
etc., that are responsible for specific web mining and personalization
tasks. They integrate various mining techniques using common represen-
tation of documents in the vector space model in order to recommend hy-
perlinks and banners. Verification process is represented by a task graph.
ROSA agents not only detect when their information should be verified,
but they are also able to coordinate knowledge update operations (using
method presented in this paper). The practical part describes the usage
of FIPA- RDF0 and ACL languages.

1 Introduction

Personalization is one of the most important techniques used for increasing the
number of clients. Developers can create web sites that use efficient and au-
tomatic personalization techniques that do not require any user’s intervention.
Those systems acquire information about clients’ behaviour in order to provide
content adapted to individual necessities [16]. Hyperlinks to probably interest-
ing documents [1418] or to commercial offers (e.g. banners [I11]) are the most
typical examples.

1.1 Personalization Problems

As the information about individual interests and preferences is hidden among
a huge volume of data, web mining techniques are very useful in personalization

E. Menasalvas et al. (Eds.): AWIC 2003, LNAT 2663, pp. 297-06] 2003.
© Springer-Verlag Berlin Heidelberg 2003

298 P. Kazienko and M. Kiewra

issue. These techniques are grouped in accordance with the type of analysed
data into [13]: web usage mining (analysis of navigation patterns and other
data related to users’ activity) [L12l14/18] and content mining (where documents’
content is mined) [2]. Both web mining branches can complement each other in
order to provide more effective personalization [15]. Our system ROSA (Remote
Open Site Agents) also integrates web usage and content mining (by means of
vector structure) in one coherent system that can be incorporated into every
web site [QT0].

Since the web mining process consists of many time-consuming steps, it was
originally divided into two parts. The former consisted of operations that could
be performed off-line (data cleaning and selection, clustering, etc.). The latter
was composed of tasks that must take place on-line (current user session classifi-
cation, ranking list creation, etc.). Since the current sites evolve constantly (the
site content and users’ activities are changing), the off-line operations should be
periodically repeated to update the mined information. Typically off-line oper-
ations are up to the site administrator who had to decide when and how often
the whole process should be performed again.

Obviously, the update will be quite trivial, if the web site is small, but it
may be a real headache in case of professional huge portals. Manual monitoring
of changes can be very tedious administrative duty. The more data a web site
generates, the longer the update process is and the greater probability of system
inconsistencies is. Therefore, a strict data coordination method is required. Ad-
ditionally, the off-line operations should be carried out when the users’ activities
are minimal.

1.2 Multi-agent System

For all these reasons, ROSA has been evolved towards multi-agent system, whose
expert-agents cooperate with one another and may be distributed among many
hosts [B]. Every agent is responsible for a single web mining task, so it encapsu-
lates specific functions that would be available for the rest of the system. Agents
not only interchange information, but they also possess their own knowledge.

ROSA can be included in every web site. From the end-users’ point of view,
ROSA is an assistant that facilitates the site navigation. The current version is
able to recommend hyperlinks and banners using information about site content,
previously visited pages and typical web usage patterns. Moreover, it provides a
search engine and some administration tools (e.g. statistics and association rules
discovering).

2 ROSA Agents in Personalization Process

Every ROSA expert-agent possesses its own characteristics related to personal-
isation process (Fig. 1).

Crawler retrieves the site content using HTTP, extracts terms from docu-
ments and counts the document-term frequency (itf). This capability is also

ROSA — Multi-agent System for Web Services Personalization 299

Crawler OFFLINE
(crawling and site content indexing)
Banner Manager Content Manager
(baner URLSs) (term vectors, document index vector)

¥ ¥
Banner Miner Content Miner Usage Miner
(baner vectors) (conceptual spaces, centroids) (usage patterns, centroids)
kY el

| L

" closest conceptual closest usage
Banner Recommender
(top baner)

space centroid Hyperlink Recommender centroid
(centroids integration, ranking)

f

User Assistent User Session Monitor ol
(web page generation) (active session vector)
[‘Web server J
HTTP response HTTP request

Web browser ONLINE

Fig. 1. Personalization process

supplied as a service (used for example by Banner Miner). Crawler is also re-
sponsible for a periodical web site monitoring and deciding whether changes are
serious enough to start the update process. Crawler takes the first step in the
personalization process.

Content Manager creates term vectors using itf indices generated by Crawler.
For every term ¢; a N-dimensional vector ¢} = (w§), w,, ..., wfy) is created. w;
denotes the weight of the term ¢; in the document d;. N is the number of
documents. As vector representation is common for the whole system, Content
Manager stores URL index that assigns vector coordinate to the specific URL
address (document index vector).

Content Miner clusters term vectors. Each cluster corresponds to a thematic
group denoted conceptual space [9], which is represented by the term vector
denoted centroid. Not all terms are used in the clustering process, only the best
content descriptors are chosen by means of the information of their occurrences
in documents and queries sent to the Search Engine [9].

User Session Monitor captures users’ HT'TP requests and groups them into
sessions using JSP servlet session mechanism [8]. For every session s; a N-
dimensional vector ¢} = (wjy, wfy, ..., wiy) is created. The coordinate wy; has
non-zero value, if the document d; was visited in the session s; [9]. User Ses-
sion Monitor possesses historical sessions and active user sessions (sessions of
the users who are currently on-line). Since it is able to estimate the number of
requests per time, it informs the Host Manager about WWW server overload.

Usage Miner clusters historical sessions into typical usage patterns. Each
pattern is represented by the mean cluster vector — centroid.

Hyperlink Recommender is responsible for creating hyperlink ranking lists. It
receives the current user’s session vector from User Session Monitor and sends it
to Usage Miner and Content Miner. The former finds the closest usage pattern
centroid and the latter — the closest conceptual space centroid, using cosine

300 P. Kazienko and M. Kiewra

similarity measure [L7]. Both centroids and the current user session vector are
joined together by Hyperlink Recommender. It forms a ranking list according
to the algorithm presented in [9]. n top documents from the ranking list are
presented to the user (by means of User Assistant).

Banner Manager is responsible for removing, adding and modifying banner
related data.

Banner Miner creates a banners’ vector b; = (w?,wb,, ..., wb,) for every

conceptual space, where wﬁ’j corresponds to the similarity between 3" conceptual

space andj*? banner; M is the number of banners. The value of wi?j is calculated
using terms common for the conceptual space and the banner target page.

Banner Recommender chooses a banner that should be presented to the
user on the current page. Banner Recommender relays to Content Miner the
current user session vector obtained from User Session Monitor. Content Miner
returns the closest conceptual space centroid. Next, Banner Recommender asks
Banner Miner for the b; vector corresponding to the conceptual space. Banner
Recommender creates a banner ranking list using the b" vector coordinates,
each banner life-time and the number of times the banner must be exposed
(according to the advertise contract conditions). Additionally, the information
about m-last exposed banners is stored for each on-line user in order to prevent
the same banner to be showed too many times.

Search Engine finds and ranks the documents that fulfil query’s criteria. It
extracts terms from the query and asks Content Manager for a list of correspond-
ing term vectors. The vectors are joined together in a result vector in accordance
with the operators placed between terms in the query. The result list is created
from the result vector: documents are ordered by corresponding result vector’s
coordinates. Additionally, the frequencies of queried terms are stored in order to
permit Content Miner to select appropriate conceptual space descriptors.

User Assistant sends requests to agents and generates ROSA page area.

Every host on which ROSA agents reside has an auxiliary Host Manager
agent. It is responsible for mediation between agents that try to use system
resources from the same host simultaneously.

3 Knowledge Verification Method

The knowledge of an agent depends on other ROSA agents’ knowledge. There-
fore, the update process can be represented as a directed acyclic task graph
where knowledge verification tasks performed by single agents are modelled by
nodes and dependency between nodes are represented by directed arcs (Fig. 2).
Task graphs are widely used especially in parallel and distributed computing
[BI4]. Changes in the knowledge of an agent implicate a necessity of knowledge
update in its all explicit and implicit dependent nodes. Agents that start and
manage the update process are called Update Managers. There are four Update
Managers, thus the whole task graph can be divided into a four overlapped task
graphs (Fig. 2). By chance, only trees are presented on the Fig. 2, but it is not a
system restriction. It is possible to add an agent whose knowledge would depend

ROSA — Multi-agent System for Web Services Personalization 301

Host Manager 'i 4 :

B : ea Content 3
e e Manager (a,)
s S | S
~
2 4 -
Content Miner Usage Miner ()
by (a5)) -
/

/ So /-
) ¢
Banner / SN Nod t
Recommender | | Banner Miner (aMD Y

\ -~ Knowledge dependence
-&--- Initialization

Fig. 2. Task graphs for knowledge verification

on Content Miner’s and Usage Miner’s knowledge. For commodity, the “tree
nomenclature” (parent, child, leaf) is applied to this paper.
The update is the four-stage process that consists of:

1. Initialisation — detection of needs for knowledge updating and approval
2. Time scheduling and global time-out estimation

3. Acquisition and propagation of knowledge changes

4. Synchronization — the acceptance of changes carried out by agents.

3.1 Initialisation

Some agents may suggest to Update Manager that external knowledge has
changed significantly. Such initialising agent may but does not have to belong to
the task graph. Verification suggestions were marked with dotted arrows (Fig. 2):

— User Session Monitor detects non-existing pages and suggests to Crawler
reindexing the site content. When User Session Monitor finds many new ses-
sions in its database, it initiates the recalculation of usage clusters by itself.

— Crawler discovers changes in the site content (new pages, updates and
deletion) on the grounds of periodically made sampling.

— Banner Manager is responsible for banner insertion and erasing, thus it
suggests updating the knowledge related to banner recommendation process.

— Search Engine possesses statistics of user queries and may initialise an
update of content mining data with the new most frequently asked terms.

The detected need is sent to the Update Manager with specific parameters, e.g.
list of unavailable pages. The manager verifies the necessity of update (accepts
or rejects it) according to the premises obtained from initialization agent, the
build-in decision rules, its previous experiences and its own knowledge.

302 P. Kazienko and M. Kiewra

3.2 Time Scheduling and Global Time-Out Estimation

Since the whole verification process consists of various long-lasting and depen-
dent steps, it has to be coordinated. The start time, and duration of each step
and the global time-out should be estimated. The below description of time
scheduling process (Fig. 3) is based on the first task graph (Fig. 2):

1. After the manager a; has decided to start the update process, it sends the
predicted duration d; of its own process (determined on the basis of its
experience) to its Host Manager and it negotiates the predicted best start
time tg and finish time #;.

2. Manager a; sends the predicted finish time ¢; to all its children with the
questions concerning the suggested finish time for all their descendants. The
children (a; has only one child as) negotiate with their Host Managers a
start time (closest after ¢;) and calculate their finish times. They relay the
question to their children with the negotiated time (a2 sends ¢2). If an agent
had two or more parents it would ask the Host Manager for the time period
after max(tp1, tpe, . . .) where tpy, is the estimated finish time of the nt? parent.

3. Leaves ag; and a4y return responses to their parents. Answers include only
their predicted finish time (t3; and t47 respectively). Parents relay their
children replies upwards in the graph. If an agent has more than one child,
it will return the greatest value, i.e. as will return t4;.

4. The global time-out is equal to the latest time returned to the manager (t41).

Crawler a

Content Manager a, |

\

| \

H i |

Usage Miner a;, i ‘
Content Miner a,, { {
‘ \

\

Banner Miner a,, ‘
\

+ - ;
now 1, f it Iy by Iy

Fig. 3. Knowledge verification suggested timeline for the graph No. 1

Please note that, every agent may have already been engaged in an update
process P’ of another task graph, e.g. Content Miner azs might be executing
the process from the fourth graph. In this case, the agent asked P’ Update
Manager (Search Engine), through their ascendants, for the whole time-out ¢’
of the process P’. The agent azs will seek for its starting time after ¢’ (Fig. 3).
Generally, an agent must not start second process, until the first one finishes. It
prevents processes from overlapping each other.

ROSA — Multi-agent System for Web Services Personalization 303

3.3 Acquisition and Propagation of Knowledge Changes

The manager and all other agents wait for the answers (concerning global time-
out) only for a short time. If not all answers come to the root, the whole process
is cancelled. Otherwise the manager sets up the global process time-out. At the
time ¢o the manager (Crawler) begins indexing web pages. None of the involved
agents overwrite its current data. New information are stored in the new data.
After the manager has finished, it sends an appropriate message to its children. If
any node detects that no data was changed, its children obtain a nothing-changed
message. If a child receives a nothing-changed message from all its parents, it
sends the same message downwards in the graph. Otherwise it starts its own
verification. The process repeats recursively. As soon as a leaf agent finishes, it
reports this to its parents, which once having answers from all its children relay
them upwards.

If another update request (from another task graph) comes while processing,
an agent waits for the first process to be finished and remembers the processes’
order.

3.4 Canceling

If the whole process does not end until the global time-out (t41), the man-
ager keeps waiting. However if another initialisation suggestion comes, it cancels
the unfinished process after taking decision about the new process. The cancel
message is sent downwards. An agent which obtains such a message deletes all
unnecessary data.

Any agent may break its process down for any reason before finishing, inform-
ing the manager about it. In such case the manager cancels the whole process
similarly to the previous case. The manager informs the system administrator
(e.g. by sending e-mail) every time the process is cancelled.

3.5 Knowledge Synchronization

If the manager has obtained positive responses form all its children, it begins
synchronization process, sending lock request to all dependant nodes with short
t; time-out. The agents wait for lock report from their children. All agents from
the graph after lock request works in default mode (not based on current data)
during the personalization process. If the manager does not obtain the lock report
from all its children until ¢;, time-out, it will cancel the process (roll it back) and
it will try again after a long ¢, time-out. Otherwise, the manager sends change
data request. All agents backup current data to old data and rewrite new data
into current data. Next, they report it to their parents. The manager sends finish
request to all agents after receiving reports from its children. Agents from the
task graph delete old data and unlock new data. Initialisation agents reset their
parameters used for initialisation.

If two verification processes are performed in the same time and there is at
least one agent that is involved in both of them, the second process must not be
carried out in the conflictive node until the first is totally finished.

304 P. Kazienko and M. Kiewra
4 ACL and FIPA-RDFO0 Usage

Each multi-agent system needs a communication language that provides a frame-
work for every communicative act defining some standard types of messages:
(inform, request, accept, etc.) and a content language that permits agents to ex-
press their world (objects, propositions, and functions). Agent Communication
Language [6] can be used as the former and FIPA-RDFO [[] as the latter. Since
ROSA architecture is thought to be easily extended, task graphs are created
dynamically by means of ACL messages. For example, if an agent a; wants to
be an element of knowledge dependency graph it must request it (sending the
following message):

(request
:sender agent_al
:receiver agent_a2
:content (<?7xml version="1.0"7>
<rdf :RDF xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
xmlns:fipa="http://www.fipa.org/schemas#">
<fipa:Action rdf:ID="unique-identifier">
<fipa:actor>agent_a2</rdf:actor>
<fipa:act>join-to-graph</rdf:act>
<fipa:argument>
<rdf:bag> <rdf:li>agent_al</rdf:1i> </rdf:bag>
</fipa:argument>
</fipa:Action>
</rdf :RDF>)
:language fipa-rdf0)

Every agent that provides any information should store a list of its knowledge
dependant nodes (children and parents). Initialisation and the global time-out
estimation is presented on Fig. 4, as an example of a communication language
usage. Message content (Knowledge Verification, ProcStarted, FinTime, etc.) is

User Session Crawler Content Content Miner Usage
Monitor Manager Miner

propque(Kn(;wledge o
Verification inform inf '
(ProcStarted) ?ll’rcc))ggta rted) inform

| (ProcStarted)
uery-ref

uery-ref
871n1¥1me(t1+t2 FinTime(t1+t2))

inform inform
{5=t1+12+t3) O 2414

Fig. 4. Sequence diagram with ACL commands used for time scheduling

time

ROSA — Multi-agent System for Web Services Personalization 305

expressed in FIPA-RDF0 language. For clearness, the communication between
agents and corresponding host administrators was omitted.

5 System Implementation

Agents and their communication were developed in Java. Although the server
part of ROSA was implemented using JSP/Servlet technologies ROSA can be
incorporated into every web site (Fig. 5). It results from that User Assistant adds
only a simple HTML frame into the current page returned by the web server.
The small java script code is attached to every site page in order to capture user
activities by User Session Monitor.

FUTI)TSU THE POSSIBILITIES ARE INFINITE

Principal Servicios Productos Noticias Sobre Fujitsu Mapa Worldwide

Noticias égg T’j@w

¥ Moticias Noviemhre 2002

¥ Sala de Prenss

Andlisis del disco duro portatil handy drive en PC Actual

» Evertos

Reportaje en Computerworld sobre Gomera Digital

Octubre 2002

Fuijitsu potencia la linea de servidores PRIMEPOWER con Solaris contres

profile more close ROSA
=¥ T recommend you this [Inks: 1. Fuiitsu Hardware 2. Digital Waorld o HTML

I search | 3. Moticias de Valencia 4. Fujitsu news frame

Fig. 5. ROSA HTML frame incorporated into a web page

6 Conclusions and Future Work

Usage and integration of information coming from different sources (web usage
mining, site content mining, search-engine statistics), especially when the site
evolved rapidly, has many inconveniences. First of all, the process of verification
of discovered knowledge is very tedious. Moreover, manual update can lead to
periodical system inconsistency. Multi-agent architecture, apart from encapsula-
tion of typical web mining tasks in heterogeneous entities, solves those problems.
ROSA agents not only detect when their information should be verified, but they
are also able to coordinate knowledge update tasks. Additionally, they treat local
system resources like limited goods that should be shared in an effective way.
Since presented system is quite easy to expand, the future works will concen-
trate on implementation of new agents, extending personalization functionality
of ROSA. It is considered to include Shop Miner — an agent that would recom-
mend the products from an internet shop and give some advice for the hesitating

306 P. Kazienko and M. Kiewra

customers. Another challenge is to develop an agent that would be responsible
for prompting sponsored hyperlinks (during the search result presentation).

References

1. Aggarwal C.C., Yu P.S.: An Automated System for Web Portal Personalization.
28" VLDB Conference, Morgan Kaufmann (2002).

2. Boley D., et al.: Document Categorization and Query Generation on the World
Wide Web Using WebACE. Artificial Intelligence Review 13 (5-6) (1999) 365-391.

3. Casavant T.L., Kuhl J.G.: A Taxonomy of Scheduling in General-Purpose Dis-
tributed Computing Systems. IEEE Transactions on Software Engineering, 14 (2)
(1988) 141-154.

4. Coffman E.G., Graham R.L.: Optimal Scheduling for Two-Processor Systems. Acta
Informatica, 1 (1972) 200-213.

5. Ferber J.: Multi-Agent Systems. Addison Wesley Longman (1999).

6. FIPA Agent Communication Language Specification. Foundation for Intelligent
Physical Agents (2000).

7. FIPA RDF Content Language Specification. Foundation For Intelligent Physical
Agents (2001).

8. Java Servlet Specification Version 2.3, http://java.sun.com.

9. Kazienko P., Kiewra M.: Link Recommendation Method Based on Web Content
and Usage Mining. New Trends in Intelligent Information Processing and Web
Mining Conference Proceedings, Advances in Soft Computing, Springer, to appear.

10. Kiewra M.: Web Management Using Users’ Data and Activities. Wroctaw Univer-
sity of Technology, M.Sc. Thesis (2002).

11. Langheinrich M., Nakamura A., Abe N., Kamba T., Koseki Y.: Unintrusive Cus-
tomization Techniques for Web Advertising. Computer Networks 31 (11-16) (1999)
1259-1272.

12. Lin W., Alvarez S.A., Ruiz C.: Efficient Adaptive-Support Association Rule Mining
for Recommender Systems. Data Mining and Knowledge Discovery 6 (1) (2002)
83-105.

13. Madria S.K., Bhowmick S.S., Ng W.-K., Lim E.P.: Research Issues in Web Data
Mining. Lecture Notes in Computer Science 1676 Springer (1999) 303-312.

14. Mobasher B., Cooley R., Srivastava J.: Automatic personalization based on Web
usage mining. CACM 43 (8) (2000) 142-151.

15. Mobasher B., Dai H., Luo T., Sun Y., Zhu J.: Integrating Web Usage and Con-
tent Mining for More Effective Personalization. EC-Web 2000, Lecture Notes in
Computer Science 1875 Springer (2000) 156-176.

16. Perkowitz M., Etzioni O.: Adaptive Web sites. CACM 43 (8) (2000) 152-158.

17. Salton G., McGill M.J.: Intruduction to Modern Information Retrieval. McGraw-
Hill Book Co. (1983).

18. Yao Y.Y., Hamilton H.J., Wang X.: PagePrompter: An Intelligent Agent for Web
Navigation Created Using Data Mining Techniques. RSCTC 2002, Lecture Notes
in Computer Science 2475 Springer (2002) 506-513.

http://java.sun.com

	Introduction
	Personalization Problems
	Multi-agent System

	ROSA Agents in Personalization Process
	Knowledge Verification Method
	Initialisation
	Time Scheduling and Global Time-Out Estimation
	Acquisition and Propagation of Knowledge Changes
	Canceling
	Knowledge Synchronization

	ACL and FIPA-RDF0 Usage
	System Implementation
	Conclusions and Future Work

