Robust estimation and forecasting of the long-term seasonal component (LTSC) of electricity spot prices

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Institute of Organization and Management
Wrocław University of Technology

Reykjavik, 24 May 2013

Financed by: NCN grant no. 2011/01/B/HS4/01077
Introduction

When building electricity spot price models we should address two questions:

- How to estimate the trend-seasonal component?
- How to forecast it?
3 approaches to LTSC modeling

1. Piecewise constant functions or dummies
 - Non-smooth LTSC with jumps between months

2. Sinusoidal functions (also coupled with EWMA)
 - Annual periodicity can hardly be observed in market data

3. Wavelets or other nonparametric smoothers
 - More robust to outliers and less periodic
 - ... but forecasting of a nonparametric LTSC is not trivial
3 LTSC fits to Nord Pool spot prices

Robust estimation and forecasting of the LTSC
3 stochastic components (residuals)

Wavelet-based residuals

Sine-based residuals

Dummies-based residuals

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
3 MRJD fits: $dX = (\alpha - \beta X) dt + \sigma dB + \mathcal{N}(\mu, \gamma) dN(\lambda)$

- $\alpha = 42.42$, $\beta = 0.29$, $(\alpha/\beta = 146.78)$, $\sigma = 11.69$, $\mu = 24.85$, $\gamma = 121.05$, $\lambda = 0.04$
- $\alpha = 24.97$, $\beta = 0.17$, $(\alpha/\beta = 143.99)$, $\sigma = 11.36$, $\mu = 19.48$, $\gamma = 109.87$, $\lambda = 0.06$
- $\alpha = 5.85$, $\beta = 0.05$, $(\alpha/\beta = 128.25)$, $\sigma = 11.25$, $\mu = 15.41$, $\gamma = 106.69$, $\lambda = 0.07$
Conclusions ... so far

- In-sample the wavelet-based LTSC (red) is clearly the best
 - This is not a surprise, given the more degrees of freedom the nonparametric models have
- But how does the wavelet-based LTSC perform out-of-sample?
- How to forecast it?
Agenda

- Introduction
- **Datasets and models**
- Estimating and forecasting the LTSC
- Results
- Conclusions

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
6 markets:
- NSW, Australia (2038 obs.)
- EEX, Germany (3754 obs.)
- Nord Pool, Scandinavia (3240 obs.)
- ISO-NE, U.S. (3770 obs.)
- NYISO, U.S. (2588 obs.)
- PJM, U.S. (1944 obs.)
304 models: Simple and sine-based models

- Simple models (1**000**) → 16 models
 - mean, median, linear regression
 - linear/exponential decay from the current spot price to the median
 - dummies: mean-based, median-based

- Sines fitted to raw prices (2***00) → 24 models
 - 1-4 sines used
 - periods estimated or set to $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ of a year

- Sines fitted to spike-filtered prices (3****0) → 48 models
 - Spikes replaced by the mean or the upper/lower 2.5% quantiles of the deseasonalized prices
304 models: Wavelet-based models

- Wavelets with an exponential decay to the median fitted to raw prices (4^{***0*}) → 48 models
 - 4 types of wavelets (Daubechies, Coiflets)
 - 3 approximation levels (6, 7, 8)
 - 2 exponential decay constants

- Wavelets with a linear decay to the median fitted to raw prices (5^{***00}) → 24 models

- Wavelets with an exponential decay to the median fitted to spike-filtered prices (6^{*****}) → 96 models
 - Spikes replaced by the mean or the upper/lower 2.5% quantiles of the deseasonalized prices

- Wavelets with an exponential decay to the median fitted to spike-filtered prices (7^{****0}) → 48 models
Agenda

- Introduction
- Datasets and models
- **Estimating and forecasting the LTSC**
- Results
- Conclusions
2 calibration windows (rolling windows):
- 2-year (730 days)
- 3-year (1095 days)

6 forecast horizons:
- 1-7 day, 8-30, 31-90
- 91-182 (2nd Qtr)
- 183-274 (3rd Qtr)
- 275-365 (4th Qtr)
Estimation: Dummies and sines

Robust estimation and forecasting of the LTSC
Forecasting: Dummies and sines

 Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
Wavelets

Decomposition of a signal

Original signal

Approximation 1 level

Approximation 7 level

Details 1 level

Details 7 level

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
Wavelets

Decomposition of a signal

Original signal

Approximation 1 level

Details 1 level

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron
Robust estimation and forecasting of the LTSC
Decomposition of a signal

Original signal

Approximation 1 level

Approximation 7 level

Details 1 level

Details 7 level

Robust estimation and forecasting of the LTSC
Estimation and forecasting: Wavelets cont.

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
Estimation and forecasting: Wavelets cont.
Agenda

- Introduction
- Datasets and models
- Estimating and forecasting the LTSC
- Results
- Conclusions
For every dataset d_i and every forecasting horizon h_j we **rank** the models according to MAE, MSE and MAPE.
For every dataset d_i and every forecasting horizon h_j we rank the models according to MAE, MSE and MAPE.

For each dataset we calculate the geometric means $GM(MAE^*, d)$ and $GM(MSE^*, d)$ of the ranks.
For every dataset d_i and every forecasting horizon h_j we rank the models according to MAE, MSE and MAPE.

- For each dataset we calculate the geometric means $GM(MAE_{*,d})$ and $GM(MSE_{*,d})$ of the ranks.
- For each horizon we calculate the geometric means $GM(MAE_{h,*})$ and $GM(MSE_{h,*})$ of the ranks.
Evaluating forecasting performance

For every dataset d_i and every forecasting horizon h_j we rank the models according to MAE, MSE and MAPE.

- For each dataset we calculate the geometric means $GM(\text{MAE}_{i,*}, d)$ and $GM(\text{MSE}_{i,*}, d)$ of the ranks.
- For each horizon we calculate the geometric means $GM(\text{MAE}_{h,*})$ and $GM(\text{MSE}_{h,*})$ of the ranks.
- We also calculate the global geometric means $GM(\text{MAE}_{*,*})$ and $GM(\text{MSE}_{*,*})$ of the ranks.
Evaluating forecasting performance

For every dataset d_i and every forecasting horizon h_j we rank the models according to MAE, MSE and MAPE.

For each dataset we calculate the geometric means $\text{GM}(\text{MAE}_{*,d})$ and $\text{GM}(\text{MSE}_{*,d})$ of the ranks.

For each horizon we calculate the geometric means $\text{GM}(\text{MAE}_{h,*})$ and $\text{GM}(\text{MSE}_{h,*})$ of the ranks.

We also calculate the global geometric means $\text{GM}(\text{MAE}_{*,*})$ and $\text{GM}(\text{MSE}_{*,*})$ of the ranks.

Finally, we calculate $\text{MAPE}_{*,d}$, $\text{MAPE}_{h,*}$ and the global $\text{MAPE}_{*,*}$.
Results

Top 15 models according to each of the three global forecast error measures

<table>
<thead>
<tr>
<th>No.</th>
<th>GM(MAE*,*)</th>
<th>Model</th>
<th>GM(MSE*,*)</th>
<th>Model</th>
<th>MAPE*,*</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.13</td>
<td>731310</td>
<td>10.84</td>
<td>623322</td>
<td>30.04%</td>
<td>734110</td>
</tr>
<tr>
<td>2</td>
<td>23.37</td>
<td>723310</td>
<td>13.75</td>
<td>622322</td>
<td>30.04%</td>
<td>732110</td>
</tr>
<tr>
<td>3</td>
<td>23.93</td>
<td>631312</td>
<td>14.71</td>
<td>624322</td>
<td>30.06%</td>
<td>733110</td>
</tr>
<tr>
<td>4</td>
<td>24.86</td>
<td>623322</td>
<td>20.98</td>
<td>631322</td>
<td>30.06%</td>
<td>723310</td>
</tr>
<tr>
<td>5</td>
<td>24.86</td>
<td>722110</td>
<td>24.82</td>
<td>631312</td>
<td>30.08%</td>
<td>731110</td>
</tr>
<tr>
<td>6</td>
<td>25.16</td>
<td>723320</td>
<td>24.91</td>
<td>633122</td>
<td>30.09%</td>
<td>724310</td>
</tr>
<tr>
<td>7</td>
<td>25.58</td>
<td>721110</td>
<td>25.63</td>
<td>624122</td>
<td>30.14%</td>
<td>731310</td>
</tr>
<tr>
<td>8</td>
<td>25.91</td>
<td>724310</td>
<td>25.82</td>
<td>621322</td>
<td>30.15%</td>
<td>623322</td>
</tr>
<tr>
<td>9</td>
<td>26.44</td>
<td>623312</td>
<td>28.87</td>
<td>634122</td>
<td>30.16%</td>
<td>624322</td>
</tr>
<tr>
<td>10</td>
<td>26.97</td>
<td>724110</td>
<td>29.50</td>
<td>621122</td>
<td>30.18%</td>
<td>722310</td>
</tr>
<tr>
<td>11</td>
<td>29.49</td>
<td>623122</td>
<td>29.74</td>
<td>722320</td>
<td>30.20%</td>
<td>724320</td>
</tr>
<tr>
<td>12</td>
<td>29.82</td>
<td>722310</td>
<td>30.76</td>
<td>721120</td>
<td>30.20%</td>
<td>721110</td>
</tr>
<tr>
<td>13</td>
<td>29.94</td>
<td>624322</td>
<td>31.96</td>
<td>623122</td>
<td>30.20%</td>
<td>722110</td>
</tr>
<tr>
<td>14</td>
<td>30.97</td>
<td>624122</td>
<td>32.77</td>
<td>422302</td>
<td>30.21%</td>
<td>723320</td>
</tr>
<tr>
<td>15</td>
<td>31.25</td>
<td>723110</td>
<td>32.88</td>
<td>424302</td>
<td>30.26%</td>
<td>722320</td>
</tr>
</tbody>
</table>
... models according to each of the three global forecast error measures

<table>
<thead>
<tr>
<th>No.</th>
<th>GM(MAE*,*) Model</th>
<th>GM(MSE*,*) Model</th>
<th>MAPE*,* Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>.</td>
<td>.</td>
<td>30.51% 423302</td>
</tr>
<tr>
<td>55</td>
<td>53.42 523300</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>69</td>
<td>.</td>
<td>71.88 130001</td>
<td>.</td>
</tr>
<tr>
<td>70</td>
<td>62.27 423302</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>79</td>
<td>.</td>
<td>77.29 524200</td>
<td>.</td>
</tr>
<tr>
<td>82</td>
<td>70.87 120005</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>105</td>
<td>.</td>
<td>.</td>
<td>30.91% 524300</td>
</tr>
<tr>
<td>120</td>
<td>.</td>
<td>.</td>
<td>31.14% 130005</td>
</tr>
<tr>
<td>128</td>
<td>98.93 120008</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>173</td>
<td>.</td>
<td>143.57 231100</td>
<td>.</td>
</tr>
<tr>
<td>174</td>
<td>.</td>
<td>143.72 331110</td>
<td>.</td>
</tr>
<tr>
<td>182</td>
<td>.</td>
<td>148.64 130008</td>
<td>.</td>
</tr>
<tr>
<td>209</td>
<td>192.24 324320</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>225</td>
<td>.</td>
<td>.</td>
<td>34.47% 130008</td>
</tr>
<tr>
<td>226</td>
<td>206.55 232200</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>228</td>
<td>.</td>
<td>.</td>
<td>36.91% 331110</td>
</tr>
<tr>
<td>241</td>
<td>.</td>
<td>.</td>
<td>37.43% 231300</td>
</tr>
</tbody>
</table>
The number of times models from a given family are ranked in the top 5, 20 and 50 of all 304 models according to $GM(MAE_{h,*})$, $GM(MSE_{h,*})$ and $MAPE_{h,*}$ for each of the six forecast horizons $h = 1,\ldots,6$.

Jakub Nowotarski, Jakub Tomczyk, Rafał Weron

Robust estimation and forecasting of the LTSC
Conclusions

- A comprehensive study on the forecasting of the LTSC
- Over 300 models examined, including commonly used and new approaches
- Wavelet-based models outperform sine-based and monthly dummy models
 - Both in-sample (modeling) and out-of-sample (forecasting)
- Validity of stochastic models built on sines or monthly dummies is questionable